

Marine Bearings

KAHR-LON[®] KSEA – EB-5550 Approved Liner System Spherical, Rod End, & Journal Bearings

Smoother. Faster. Longer. Because That's How We Roll.

RBC Bearings[®] provides global industrial, aerospace, and defense customers with unique design solutions to complex problems and an unparalleled level of service, quality, and support.

RBC manufactures highly engineered precision plain, roller and ball bearings, shaft collars, rigid couplings and keyless locking devices. While RBC designs and manufactures products in these major product categories, RBC excels at solving the most demanding and difficult applications with solutions that improve customers' products and process performance and deliver the lowest total cost of ownership. This has been achieved by providing products such as maintenance free bearings, components, and bearings designed to withstand environments with extreme temperature, high speed, contamination, corrosion, and severe shock loading.

RBC Bearings[®] has been providing engineered solutions to customers since 1919. RBC has significantly broadened our end markets, products, customer base and geographic reach through organic growth and through acquisitions. These acquisitions fit well with our philosophy of providing high quality products and solutions to our customer base. They have enhanced our customer solutions and experience, further diversifying our offering to our target markets.

RBC currently has 42 facilities in five countries, with manufacturing in 33 locations.

What We Manufacture

Kahr Bearing[®], a division of RBC Bearings[®] operates out of the Sargent Aerospace and Defense facility in Tucson, AZ. Kahr specializes in the design and manufacture of PTFE lined metal-to-metal monoball and sliding element bearings for military / commercial aircraft and rotorcraft, industrial / passenger railcars, and military marine applications.

Kahr's High-Quality Bearings Include:

- Plain Bearings A full line of plain bearings including journal bearings (bushings), spherical bearings, rod ends, linkages, and specialty assemblies.
- **Spherical Bearings** Spherical bearings include conventional swaged outer race, load slot entry, and split ball styles.
- Kaptor[®] Bearings Kaptor[®] Bearings are metal-to-metal or selflubricating, low-friction bearings incorporating a threaded retainer ring for installation and replacement where accessibility for staking or high thrust loads prevent traditional bearing retention methods.
- Wear Strips Wear Strips are composite liners that can be applied to prevent incidental damage to mating components. Wear Strips are sold in standard sheet sizes or custom shapes and are available with peel ply and peel-and-stick backings to allow for ultimate flexibility as each application requires.
- Fretting Buffers Fretting Buffers are composite liners that, when applied between static components, protect against fretting, galling or galvanic corrosion damage to the mating surfaces.
- Marine Grade Materials The use of marine grade materials in our products include; Monel 400, Monel K-500, 440C, 17-4PH, 15-5PH, PH13-8Mo, Stellite[®], Inconel[®], titanium, and aluminum. Other material options are readily available.

Experts in the Industry

Starting in the concept phase, Kahr partners with our customers to ensure that the end product is a success, and then stands behind the designs with outstanding customer service and product support. Kahr Bearing is proud to be recognized as a 2019 Elite Supplier to the Lockheed Martin Rotary Mission Systems Group, and is the only bearing manufacturer to be qualified and QPL listed to the rigorous standards of AS81819 high speed oscillation specification which is intended for helicopter main and tail rotor bearing applications. We invite you to contact Kahr Bearing for more information about our full range of self-lubricated liner technologies. We love a challenge and are up to the task.

How We Can Serve You

Kahr Bearing[®] has implemented a total quality control system that uses statistical quality control at all facilities, and manufactures in high volume to a just-in-time program.

To serve the ongoing needs of customers, we have a network of over 2,400 distributors and sales engineers throughout North and South America and Europe, with authorized agents worldwide.

For assistance with your bearing application:

Warranty

Kahr products are warranted for material and workmanship for a period not to exceed 90 days from shipment and for a value not to exceed purchase price. No other warranty is in effect.

Disclaimer and Intellectual Property Statement

The materials comprising this Catalog are provided by RBC Bearings Incorporated ("RBC Bearings, RBC") as a service to its customers on an "as-is" basis for informational purposes only. RBC assumes no responsibility for any errors or omissions in these materials. RBC makes no commitment to update the information contained herein.

RBC makes no, and expressly disclaims any, representations or warranties, express or implied, regarding the Catalog, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose. RBC makes no, and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness, timeliness, and reliability of the text, graphics and any other items in the Catalog. Under no circumstances shall RBC, its affiliates, or any of their respective partners, officers, directors, employees, agents or representatives be liable for any damages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with this Catalog and the materials contained herein.

All materials contained in the Catalog are protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of RBC.

RBC's names and logos and all related trademarks (including RBC Part Numbers, Series Number, and Cone and Cup Numbers), tradenames, and other intellectual property are the property of RBC Bearings and cannot be used without its express prior written permission.

Smoother. Faster. Longer.

Because That's How We Roll.

Product Overview

- ✓ Ball Bearings
- Cam Followers
- ✓ Cylindrical Roller Bearings
- ✓ Dowel Pins
- ✓ Heavy Duty Needle Roller Bearings
- Integrated Assemblies
- Keyless Locking Assemblies
- Keyless Rigid Couplings
- ✓ Loose Needle Rollers and Shafts
- Maintenance-Free Bearings
- Rigid Couplings
- Rod Ends
- ✓ Self-Lubricating/Lined Bearings
- Shaft Collars
- Shrink Discs
- Spherical Plain Bearings
- Tapered Roller Bearings
- ✓ Tapered Roller Thrust Bearings
- ✓ Thin Section Ball Bearings

Industrial Markets Served

- Automation
- Construction
- Food & Beverage
- Material Handling
- Mining
- 🗸 Oil & Gas
- Packaging Machinery
- ✓ Refuse & Recycling
- Renewable Energy
- ✓ Military & Defense
- Power Generation
- Robotics
- Semiconductor
- Transportation
- Hydropower & Dams

Custom Engineered Solutions

- Maintenance-Free Bearings
- Bearings & Components
 - for Harsh Environments
 - Extreme Temperatures
 - High Speed
 - Contamination
 - Corrosion
 - Shock Loading
- ✓ Advanced Sub-Assemblies

TABLE OF CONTENTS

KAHR[®] Bearing

Contact Us	6
About KAHR [®] Bearing	7
Bearing Types	8
KAHR-LON [®] PTFE Liners	9-10
Load Rating Determination & Definitions	10-11

Spherical Bearings

Introduction

Designation			12-13
KSEAB-N	Narrow	Lined Race	14
KSEAB-P	Narrow	Lined Race & Bore	15
KSEAB-W	Wide	Lined Race	16
KSEAB-Y	Wide	Lined Race & Bore	17
KSEAB-E	High Misalignment	Lined Race	18
KSEAB-T	Thrust Loaded	Lined Race	19
KSEAB-S	Special Size	Lined Race	20

Rod End Bearings

Designation				22-23
KSEAR-NM	Narrow	Lined Race	Male	24
KSEAR-NF	Narrow	Lined Race	Female	25
KSEAR-PM	Narrow	Lined Race & Bore	Male	26
KSEAR-PF	Narrow	Lined Race & Bore	Female	27
KSEAR-WM	Wide	Lined Race	Male	28
KSEAR-WF	Wide	Lined Race	Female	29
KSEAR-YM	Wide	Lined Race & Bore	Male	30
KSEAR-YF	Wide	Lined Race & Bore	Female	31
KSEAR-EM	High Misalignment	Lined Race	Male	32
KSEAR-EF	High Misalignment	Lined Race	Female	33

Journal Bearings

Designation			34-35
KSEAJ-S	Straight Sleeve	Lined Bore	36
KSEAJ-F	Flanged Sleeve	Lined Bore & Flange	37
KSEAJ-G	Flanged Sleeve	Lined Bore	37

	799 A
d la	
	-

Appendix		
Appendix A	Staking Retention Groove	38
Appendix B	Rod End Keyway Slot	39
X1200S Liner	Technical Data Sheet	40-41
KSEA Liner	Technical Data Sheet	42-43

Introduction

Contact Us

5675 W. Burlingame Road Tucson, AZ 85743

Office: (520) 744-1000 **Toll Free:** (800) 230-0359 **Fax:** (520) 744-9494

info@sargentaerospace.com

Introduction About KAHR® Bearing

The **KAHR[®] Bearing** division of **RBC[®] Sargent Aerospace and Defense**[™] is the market leader in the design, development, and manufacture of lined and metal-to-metal plain, sliding element bearings. Bearings produced by **KAHR[®]** represent the highest engineering and manufacturing standards attainable today. This is why marine, aerospace, and industrial designers all come to **KAHR[®]** with their bearing applications and problems. They know that our bearings can be relied on to meet or exceed the most demanding requirements. **KAHR[®] Bearing** is a wholly owned subsidiary of **RBC[®] Bearing**.

KAHR[®] specializes in lubricated and self-lubricating (lined), plain, sliding bearings. These bearings provide higher load ratings than the rolling type, and are ideally suited for the high load, low velocity applications seen in aerospace, marine, and industrial applications. **KAHR**[®]'s lined bearings makes use of the **KAHR-LON**[®] liner. As a pioneer in the field of self-lubricating bearings, **KAHR**[®] has helped the Aerospace Standards Group in the development of Military Standards for self lubricated bearings. The proprietary **KAHR-LON**[®] liner system provides a smooth, durable, lube-free liner which assures performance and characteristics that exceed that of ordinary fabric liners, allowing **KAHR**[®] to produce extremely low-friction, long-life bearings that are maintenance-free.

To meet and exceed ever-increasing standards, **KAHR**[®] **Bearing** performs extensive research and development in the fields of metallurgy, mechanics, composites, and other disciplines related to friction reduction, energy control, and load transmission. Engineering specialists and technicians continuously test and evaluate new bearing designs, materials, and manufacturing methods. Their findings help to ensure that the customer is provided with the perfect bearing for their application.

Sargent Controls & Aerospace is ISO9001 and AS9100 certified, and an FAA and JAA approved repair station.

Please note that catalog dimensions, loads, and/or materials may be subject to changes or corrections.

Introduction Bearing Types

Spherical Bearings

A self-aligning spherical bearing allows the same freedom of motion as provided by a journal bearing, but also permits a restricted movement in two operating axes (misalignment).

A spherical bearing consists of the ball (or inner race) contained by the outer race. The ball is allowed to pivot within the outer race, which in turn leads to the ability for movement. The design of the inner and outer race allows for varying degrees of allowed misalignment.

Spherical bearings are more complicated to manufacture than journal bearings, because fitting the ball within the outer race is an additional, and complex, process. This can be accomplished by several methods, including swaging, snap-in, split race, split ball, Kaptor-type, or through a loader slot. Spherical bearings can use either a self-lubricating liner, oil, grease, or a dry film lubricant. The bearings in this catalog are swaged with a self-lubricating liner.

Spherical Rod End Bearings

Spherical rod ends consist of a threaded body which retains a spherical bearing insert. The body can have either external or internal threads, depending on the application.

Spherical rod ends can be either a three-piece or a two-piece. A three-piece rod end uses a complete spherical bearing insert to gain its movement, while in a two-piece rod end, the body itself serves as the outer race, and thus may be swaged around the ball.

Rod ends are often used in linkages, and like the other bearings produced at **KAHR**[®], spherical rod ends can be either lined or greased. If the bearing is a metal-to-metal type, a grease fitting is often used in order to facilitate regular lubrication. The spherical rod ends in this catalog are three-piece with a self-lubricating liner.

Journal Bearings

Journal bearings or bushings are used when loads are in the radial (normal to the axis) direction. They consist usually only of a cylindrical tube, in which a pin or similar device is allowed movement through.

Common materials used for plain journal bearings include aluminum bronze, aluminum nickel bronze, and beryllium copper. Flanged journal bearings contain a flange on one or both ends of the cylinder, allowing the bearing to support axial (parallel to the axis) loads.

Flanged bearings that are fabric-lined often contain a liner on the thrust face of the flange as well as within the cylinder. Applications often include landing gear shock struts and helicopter rotor head spindles. Journal bearings can either be self-lubricating or lubricated.

The journal bearings in this catalog are straight or flanged with self-lubricating liner on the inside diameter as well as on the flange when specified.

Introduction KAHR-LON® PTFE Liners

KAHR-LON® Liner System

The **KAHR-LON**[®] liner system is one of the most advanced self-lubricating bearing liner systems. The **KAHR-LON**[®] liner family now contains eleven different varieties, each designed for different applications. Use of a self-lubricating liner eliminates the need for periodic maintenance, and allows for the use of lightweight materials like aluminum or titanium.

The liner is installed and cured under heat and pressure, resulting in a smooth, durable surface. This surface creates a discreet boundary between the wear surfaces. This discreet surface is also present between the metal substrate and the base fabric. **KAHR-LON**[®] is a peelable liner, meaning that it can be stripped off in one continuous piece without breakage of the fabric fiber, which aids in refurbishment operations.

Self-lubricated bearings in this catalog use the **KAHR-LON® X1200S** and **KAHR-LON® KSEA** liner systems. For different liner applications, please contact **KAHR®** Engineering.

KAHR-LON® X1200S is an engineered composite self-lubricating liner system that is ideal in applications with low speeds, intermittent and continuous oscillation, and high alternating loads. The proprietary architecture of **KAHR-LON® X1200S** liner contains a blend of polytetrafluoroethylene (PTFE) material suspended in a phenolic based resin. This lubricant system is impregnated into a custom designed woven fabric, which provides structural strength and resistance to cold flow under load. Once bonded, this liner system is resistant to high compressive loads, shear loads and impermeable to contamination under a variety of conditions. **KAHR-LON® X1200S** self-lubricating liner system is the lowest friction liner system in the industry.

KAHR-LON® KSEA liner is an engineered composite self-lubricating liner system that provides longer life and low friction for underwater bearing applications. This liner system is ideal in submerged applications with low speeds, intermittent to continuous oscillation, and high alternating loads. **KAHR-LON® KSEA** liner is proven to meet the industries increasing demands, and is fully qualified to General Dynamics Electric Boat specification EB-5550. The architecture of **KAHR-LON® KSEA** liner contains a proprietary blend of polytetrafluoroethylene (PTFE) material suspended in a phenolic based resin. This lubricant system is impregnated into a custom designed woven fabric, which provides structural strength and resistance to cold flow under load. Once bonded, this composite liner system is resistant to high compressive and shear loads under a variety of conditions.

Anatomy of a KAHR-LON[®] Liner

KAHR-LON® Self-Lubricating Liner Systems and Capabilities

Kahr Bearing **Kahr-Lon**[®] **Self-Lubricating Liners** are engineered composite systems that provides longer life and low friction for Military / Defense applications. **Kahr-Lon**[®] liners utilize high-strength fabrics and phenolic resins to create a composite with maximum shear and tensile strengths. In addition, our liners are bonded with high-performance thermosetting adhesives that produce the industry's strongest bond. Once bonded, these liner systems are resistant to high compressive loads, shear loads, and impermeable to contamination under various conditions. Technical Data Sheets (TDS) are available for each **Kahr-Lon**[®] **Self-Lubricating Liner System** (see pages 40-43).

Introduction KAHR-LON[®] PTFE Liners

		Thickness Or Ten				kimum Radi	al Load Ra	tings	Maximum	
Liner	Common			Marr	Limit	Ultimate	Max	Continuous	Velocity	Approvals
	Applications		MIN	Max	Sta	atic	Dyı	namic		
		in (mm)	°F	(°C)		lb/in2	(MPa)		ft/min (m/sec)	1
X1200S	Landing Gear Shock Strut Bearings, Steering Collars/Torque Tubes, Axle Retainers/Tow Fittings, Actuation, Flight Control, Support, Airframe, Space Mechanisms, Helicopter Swashplate	0.010 (0.25)	-65 (-54)	325 (163)	80,000 (552)	100,000 (689)	37,500 (257)	30,000 (207)	3.0 (0.015)	AS81820 AS81934 AS8943 AS8942
KSEA	Marine Environment, Fully Submerged, Salt Water Immersed, Spherical Bearings, Journal Bearings, Rod End Bearings	0.010 (0.25)	-65 (-54)	325 (163)	80,000 (552)	100,000 (689)	37,500 (257)	30,000 (207)	3.0 (0.015)	EB-5550
X4110	Landing Gear Shock Strut Bearings, Steering Collars/Torque Tubes, Axle Retainers/Tow Fittings, Actuation, Flight Control, Support, Airframe	0.010 (0.25)	-65 (-54)	500 (260)	80,000 (552)	100,000 (689)	37,500 (257)	30,000 (207)	3.0 (0.015)	AS81820*
K-HELO-1C	Main Rotor Pitch Link, Main Rotor Swashplate, Main Rotor Damper, Main Rotor Scissor, Tail Rotor Pitch Link	0.019 (0.48)	-65 (-54)	325 (163)	71,000 (490)	106,000 (731)	4,600 (32)	2,300 (16)	26.0 (0.13)	AS81819
K-HELO-2	Main Rotor Pitch Link, Main Rotor Swashplate, Main Rotor Damper, Main Rotor Scissor, Tail Rotor Pitch Link	0.010 (0.25)	-65 (-54)	325 (163)	20,000 (138)	30,000 (207)	4,220 (29)	2,110 (14)	13.6 (0.069)	AS82819**
X1540A	Landing Gear Shock Strut, Airframe, Helicopter Swashplate, Main Rotor Bearing, Helicopter Pylon/Spindle	0.021 (0.53)	-65 (-54)	325 (163)	80,000 (552)	100,000 (689)	30,000 (207)	30,000 (207)	15.0 (0.08)	AS81820** AS81819**
X1540D	Landing Gear Shock Strut, Airframe, Helicopter Swashplate, Main Rotor Bearing, Helicopter Pylon/Spindle	0.021 (0.53)	-65 (-54)	325 (163)	80,000 (552)	100,000 (689)	30,000 (207)	30,000 (207)	15.0 (0.08)	AS81819**

* Meets or exceeds type A requirement.

** Meets or exceeds.

Load Rating Determination

Radial and axial (or thrust) load capacities for plain bearings are determined on the basis of the projected area of the bearing surface in the direction of the load application.

For a spherical bearing, the projected area which is supporting a pure radial load or pure axial load are given in the equation below, where 'U' represents the ball diameter of the bearing, and 'H' represents the effective race width of the bearing. The arcsine angle is in radians.

$$Area_{radial} = rac{1}{2} \left[H \sqrt{U^2 - H^2} + U^2 \sin^{-1} \left(rac{H}{U} \right) \right] \qquad Area_{axial} = rac{\pi}{4} H^2$$

For a fabric-lined bearing using our **KAHR-LON**[®] liner system, radial and axial limit loads are determined by multiplying the calculated projected area by 75,000 psi. This result is called the limit load, and the ultimate load is arbitrarily 1.5 times the calculated limit load.

It should be understood that load ratings determined in this manner apply only when the bearing is experiencing either a pure radial load or a pure axial load. That is, the bearing cannot withstand a combined simultaneous application of the radial limit load with the axial limit load. If it is necessary to know whether a specific bearing can support a combined application of radial and axial loads, simply provide **KAHR**[®] with the conditions and we can readily determine whether the bearing is suitable.

Introduction

Load Rating Determination

Loads shown for spherical bearing inserts (**KSEAB**) will differ from those supplied for their associated rod end assemblies (**KSEAR**). Loads shown on spherical bearing catalog pages are reflective of the max allowable load that can occur before reaching the yield limit of the liner material, based on the above projected area calculations. Loads shown for the rod end assemblies are reflective of the max allowable load that can occur before reaching the tensile limit of the rod end body material. Please be aware of both load ratings with respect to your application.

	Load Rating Definitions
Dynamic Load <i>or</i> Oscillating Radial Load	May be used interchangeably. For spherical bearings, this load is the suggested maximum load while operating under the following conditions: $\pm 25^{\circ}$ of angular oscillation of the ball about the bore axis (100° total travel per cycle) at a speed of 10 cycles per minute. This loading is predicted to cause the liner to wear to the maximum allowable limit of AS81820 at 25,000 cycles.
Radial Static Limit Load	Is the maximum load which, when applied to a bearing that is installed as shown in Figure 1, but without ball oscillation, will not cause permanent deformation in any of the bearing components. At KAHR [®] , this load rating is determined by multiplying the projected, or «footprint», area of the bearing by the yield strength for the weakest bearing component.
Radial Static Load, Yield Allowable	Strictly interpreted, this describes a load which may cause negligible yielding of bearing components. At KAHR [®] we use this interchangeably with "Radial Static Limit Load". We use it this way because we recognize that in the bearing there will be minor instances of non-conformity which may be "ironed out" as a result of the radial static limit load. This will cause an increase in the internal clearance of the bearing.
Radial Static Ultimate Load	Refers to bearings fixtured as shown in Figure 1, but without ball oscillation. "Ultimate Load" is a somewhat meaningless term, and is arbitrarily assigned as 1.5 times the limit load.
Axial Static Limit Load	Is the maximum load which, when applied to a bearing that is installed as shown in Figure 2, but without ball oscillation, will not cause permanent deformation in any of the bearing components. At KAHR [®] , this load rating is determined by multiplying the projected, or «footprint», area of the bearing by the yield strength for the weakest bearing component.
Axial Static Ultimate Load	Is defined arbitrarily as 1.5 times the axial static limit load.

Spherical Bearings

Self-Lubricating

-					KSEA E	3 0 8	тс	Z 5 D 2			
Example: -		KSEA	В	08	т		С	Z	5	D	2
omenc	lature	Bearing Line	Bearing Type	Bore Size	Bore Series Race Line Size Type Type Type		Liner Type	Ball Material	Ball OD Plating*	Race Material	
Position		1	2	3	4		5	6	7	8	9
Posi KSEA	ition 1: I A KAHR®	Bearing Li Self-Lubricat	ne ting Marine Proc	duct Line		Pos Z Q	KAHR-L KAHR-L	: Liner Typ .0N® KSEA .0N® X1200S	e Qualified to Qualified to	EB-5550 AS81820 & AS	581934
B	Spherical	Bearing I	уре			Pos 1	ition 7 13-8 PH	' & 9: Ball & I CRES Stainle	ss AMS-562	erials 29	
Posi XX	ition 3: I Bore Size	Bore Size Code (2 Digit	s, see datashee	et)		2 3	17-4 PH Inconel	I CRES Stainle	AMS-564	13 62 or AMS-566	33
Posi	ition 4: S	Series Typ)e			5	316 Stai	inless	AMS-565	53 or AMS-QQ	-S-763
ΝΙ	Narrow		Lined Race			6	Inconel	625	AMS-566	6	
P	Narrow		Lined Race & E	Bore		7	Monel K	(-500	AMS-QC	-N-286	
W	Wide		Lined Race	/		8	Monel 4	.00	AMS-QC	-N-281	
Y	Wide		Lined Race & E	Bore		Othe	er option	is available. Ple	ease contact K	AHR® Bearing	
EI	High Misal	lignment	Lined Race			for p	proper pa	art number.			
Т	Thrust Loa	aded	Lined Race			Pos	ition 8	: Ball O <u>D</u> P	lating*		
S S	Special Siz	ze	Lined Race			A	Chromiu	um	AMS-QQ	-C-320	
						B	Ceramic	2	AMS-243	37	
Pos	ition 5: I	Race Type	•		/	С	Nickel		AMS-QQ	-N-290	
C	Chamfered	b				D	Cadmiu	m (Race OD oi	nly) AMS-QQ	-P-416	

		N	No Plating

*Side face	plating	is	optional.
------------	---------	----	-----------

Other options available. Please contact ${\sf KAHR}^{\circledast}$ Bearing for proper part number.

This catalog offers some of the more standard sized spherical bearings. If a desired size is not found within this catalog, please contact **KAHR**[®] **Bearing** at 520-744-1000 x4735 for any special size and geometry requests.

Note: Displayed loads (see datasheets) are based on KAHR-LON® KSEA liner strength of 75,000 psi.

G

Grooved

Spherical Bearings

Self-Lubricating

KSEAB-N Narrow, Lined Race

Self-Lubricating Spherical Bearings

Interchangeable with KNR-CN Series-Narrow

✓ Narrow Series

✓ Lined Race

- ✓ High Temperature—Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ Similar to AS14101 & AS14104 (Formerly MS14101 & MS14104)
- ✓ Found in **KSEAR-N Rod Ends** (see pages 24 & 25)
- \checkmark For material, liner, and plating options (see page 12)

KSEAB-N

	В	D	W	н	Α	C ⁽¹⁾	P ⁽²⁾	X	U	Rad	ial Load Ra	ating
BORE SIZE	Bore Diameter	Outside Diameter	Ball Width	Race Width	Shoulder Diameter	Chamfer	Groove Diameter	Angle	Ball Diameter	Static Limit	Static Ultimate	Dynamic
CODE	+ 0.000 - 0.001	+ 0.000 - 0.001	+ 0.000 - 0.002	+ 0.010 0.000	Ref	Min	+ 0.005 - 0.005	Ref	Ref	Max	Max	Max
	in	in	in	in	in	in	in	deg	in	lbs	lbs	lbs
03	0.190	0.563	0.281	0.213	0.334	0.010	0.503	10	0.437	4,900	7,300	2,200
04	0.250	0.656	0.343	0.245	0.364	0.010	0.596	10	0.500	6,700	10,000	3,000
05	0.313	0.750	0.375	0.276	0.459	0.010	0.650	10	0.593	9,300	13,900	4,200
06	0.375	0.813	0.406	0.307	0.475	0.020	0.713	9	0.625	10,800	16,200	4,900
07	0.438	0.906	0.437	0.338	0.570	0.020	0.806	8	0.718	14,000	21,000	6,300
08	0.500	1.000	0.500	0.385	0.600	0.020	0.875	8	0.781	17,900	26,800	8,100
09	0.563	1.094	0.562	0.432	0.671	0.020	0.969	8	0.875	22,400	33,600	10,100
10	0.625	1.188	0.625	0.495	0.781	0.020	1.063	8	1.000	30,200	45,300	13,700
12	0.750	1.438	0.750	0.588	1.000	0.030	1.313	8	1.250	45,400	68,100	20,600
14	0.875	1.563	0.875	0.698	1.061	0.030	1.438	8	1.375	60,500	90,700	27,400
16	1.000	1.750	1.000	0.792	1.200	0.030	1.625	9	1.562	79,300	118,900	36,000
18	1.125	2.125	1.125	0.906	1.340	0.030	2.000	8	1.750	103,000	154,500	46,800
20	1.250	2.313	1.250	1.000	1.480	0.030	2.188	6	1.937	127,100	190,600	57,700
22	1.375	2.563	1.375	1.100	1.661	0.030	2.438	8	2.156	157,100	235,600	71,400
24	1.500	2.813	1.500	1.200	1.801	0.030	2.688	8	2.344	187,500	281,200	85,200
(1) Chamfered Tvr	De Only (2) Gro	ooved Type Only	v	,			·					

KSEAB-P Narrow, Lined Race & Bore

Self-Lubricating Spherical Bearings

Groove

Туре

А

Size

04

✓ Narrow Series 05-07 В ✓ Lined Race & Bore **08**+ С See page 38 for info. ✓ High Temperature—Low Wear ✓ -65°F to +325°F (-53.9°C to 162.8°C) Similar to AS81820/1 & AS81820/4 Chamfered Grooved (Formerly MIL-B-81820/1 & MIL-B-81820/4) W W Found in KSEAR-P Rod Ends н (see pages 26 & 27) ✓ For material, liner, and plating options (see page 12) D Ρ D В А U В А U **KAHR-LON KAHR-LON** C x 45° LINER LINER KSEAB-P В D w н Α **C**⁽¹⁾ P (2) Х U **Radial Load Rating** Outside Bore Ball Race Shoulder Groove Ball Static Static BORE Chamfer Angle **Dynamic** Diameter Width Diameter Diameter Ultimate Diameter Width Diameter Limit SIZE CODE + 0.000 + 0.005 + 0.000+ 0.000+ 0.010Ref Min Ref Ref Max Max Max - 0.001 - 0.002 0.000 - 0.005 - 0.001 in in in in in deq in lbs lbs lbs in in 04 0.010 0.540 0.251 0.656 0.343 0.245 0.420 0.596 10 6,000 9,000 2,700 05 0.314 0.750 0.375 0.276 0.480 0.010 0.650 0.610 8,200 12,300 3,700 10 06 0.376 0.406 0.307 0.518 0.020 0.713 0.656 14,800 4,400 0.813 9 9,900 07 0.439 0.906 0.437 0.338 0.572 0.020 0.806 8 0.718 12,600 18,900 5,700 08 0.501 1.000 0.500 0.385 0.644 0.020 0.875 8 0.813 16,800 25,200 7,600 0.564 1.094 0.562 0.432 0.714 0.020 0.969 8 0.906 21,500 32,200 9,700 09 0.626 0.625 0.495 0.821 0.020 1.063 1.031 26,800 40,200 12,100 10 1.188 8 12 0.751 1.438 0.750 0.588 1.037 0.030 1.313 8 1.280 39,200 58,800 17,800 14 0.876 0.875 0.698 0.030 8 54,000 81,000 24,500 1.563 1.068 1.438 1.380 9 71,100 106,600 32,300

1.001 (1) Chamfered Type Only (2) Grooved Type Only

1.750

1.000

0.792

1.200

0.030

1.625

1.562

16

ARINGS

R

KSEAB-W Wide, Lined Race

Self-Lubricating Spherical Bearings

Interchangeable with KNR-CW Series-Wide

✓ Wide Series

- ✓ Lined Race
- ✓ High Temperature—Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ Similar to AS14101 & AS14104 (Formerly MS14101 & MS14104)
- ✓ Found in KSEAR-W Rod Ends (see pages 28 & 29)
- For material, liner, and plating options (see page 12)

Grooved

P

D

W

н

B

A U

KAHR-LON

LINER

KSEAB-W

	B	D	W	н	Α	C ⁽¹⁾	P ⁽²⁾	X	U	Rad	ial Load Ra	ating
BORE SIZE	Bore Diameter	Outside Diameter	Ball Width	Race Width	Shoulder Diameter	Chamfer	Groove Diameter	Angle	Ball Diameter	Static Limit	Static Ultimate	Dynamic
CODE	+ 0.000 - 0.001	+ 0.000 - 0.001	+ 0.000 - 0.002	+ 0.010 0.000	Ref	Min	+ 0.005 - 0.005	Ref	Ref	Max	Max	Max
	in	in	in	in	in	in	in	deg	in	lbs	lbs	lbs
03	0.190	0.625	0.437	0.322	0.302	0.010	0.565	15	0.531	9,900	14,800	4,400
04	0.250	0.625	0.437	0.322	0.302	0.010	0.565	15	0.531	9,900	14,800	4,400
05	0.313	0.688	0.437	0.312	0.401	0.010	0.628	14	0.593	10,800	16,200	4,900
06	0.375	0.813	0.500	0.401	0.471	0.020	0.713	8	0.687	16,300	24,400	7,400
07	0.438	0.938	0.562	0.437	0.542	0.020	0.838	10	0.781	20,600	30,900	9,300
08	0.500	1.000	0.625	0.500	0.612	0.020	0.900	9	0.875	27,000	40,500	12,200
09	0.563	1.125	0.687	0.531	0.727	0.020	1.025	10	1.000	32,600	48,900	14,800
10	0.625	1.188	0.750	0.562	0.752	0.020	1.088	12	1.062	37,000	55,500	16,800
12	0.750	1.375	0.875	0.625	0.893	0.030	1.250	13	1.250	48,500	72,700	22,000
14	0.875	1.625	0.875	0.750	1.061	0.030	1.500	6	1.375	65,300	97,900	29,600
16	1.000	2.125	1.375	1.000	1.275	0.030	2.000	12	1.875	122,700	184,000	55,700
20	1.250	2.375	1.500	1.125	1.460	0.030	2.250	14	2.093	155,500	233,200	70,600
22	1.375	2.563	1.687	1.218	1.535	0.030	2.438	14	2.281	184,700	277,000	83,900
24	1.500	2.688	1.687	1.218	1.693	0.030	2.563	13	2.390	194,400	291,600	88,300
26	1.625	2.875	1.750	1.281	1.829	0.030	2.750	12	2.531	217,400	326,100	98,800
28	1.750	3.000	1.812	1.312	1.964	0.030	2.875	12	2.672	236,000	354,000	107,200
30	1.875	3.125	1.875	1.343	2.096	0.030	3.000	12	2.812	255,200	382,800	115,900
32	2.000	3.250	1.937	1.375	2.208	0.030	3.125	13	2.937	273,700	410,500	124,300
36	2.250	3.625	2.000	1.406	2.441	0.030	3.500	12	3.156	302,200	453,300	137,300
40	2.500	3.938	2.062	1.437	2.750	0.030	3.813	11	3.437	338,100	507,100	153,600
44	2.750	4.125	2.187	1.500	2.968	0.030	4.000	12	3.687	380,100	570,100	172,700
48	3.000	4.375	2.312	1.562	3.187	0.030	4.250	12	3.937	424,200	636,300	192,700
(1) Chamfered Typ	e Only (2) Gro	poved Type Only	/									

KSEAB-Y Wide, Lined Race & Bore

Self-Lubricating Spherical Bearings

✓ Wide Series

✓ Lined Race & Bore

- ✓ High Temperature—Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar to AS81820/2
 & AS81820/3 (Formerly MIL-B-81820/2 & MIL-B-81820/3)
- ✓ Found in KSEAR-Y Rod Ends (see pages 30 & 31)
- For material, liner, and plating options (see page 12)

KSEAB-Y

	В	D	W	н	Α	C ⁽¹⁾	P ⁽²⁾	X	U	Rad	ial Load Ra	ating
BORE SIZE	Bore Diameter	Outside Diameter	Ball Width	Race Width	Shoulder Diameter	Chamfer	Groove Diameter	Angle	Ball Diameter	Static Limit	Static Ultimate	Dynamic
CODE	+ 0.000 - 0.001	+ 0.000 - 0.001	+ 0.000 - 0.002	+ 0.010 0.000	Ref	Min	+ 0.005 - 0.005	Ref	Ref	Max	Max	Max
	in	in	in	in	in	in	in	deg	in	lbs	lbs	lbs
05	0.314	0.688	0.437	0.312	0.401	0.015	0.628	14	0.593	9,000	13,500	4,000
06	0.376	0.813	0.500	0.401	0.471	0.020	0.713	8	0.687	12,600	18,900	5,700
07	0.439	0.938	0.562	0.437	0.542	0.020	0.838	10	0.781	16,700	25,000	7,500
08	0.501	1.000	0.625	0.500	0.612	0.020	0.900	9	0.875	21,400	32,100	9,700
09	0.564	1.125	0.687	0.531	0.727	0.020	1.025	10	1.000	26,700	40,000	12,100
10	0.626	1.188	0.750	0.562	0.752	0.020	1.088	12	1.062	32,700	49,000	14,800
12	0.751	1.375	0.875	0.625	0.893	0.030	1.250	13	1.250	46,200	69,300	20,900
14	0.876	1.625	0.875	0.750	1.061	0.030	1.500	6	1.375	54,000	81,000	24,500
16	1.001	2.125	1.375	1.000	1.275	0.030	2.000	12	1.875	99,200	148,800	45,000

(1) Chamfered Type Only (2) Grooved Type Only

KSEAB-E High Misalignment, Lined Race

Self-Lubricating Spherical Bearings

Interchangeable with KNR-CE Series-High Misalignment

✓ High Misalignment

- ✓ Lined Race
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ Found in KSEAR-E Rod Ends (see pages 32 & 33)
- For material, liner, and plating options (see page 12)

Groove

Туре

А

В

С

Size

03 - 08

10

12+

KSEAB-E

	В	D	W	н	Α	C ⁽¹⁾	P ⁽²⁾	X	U	Rad	ial Load Ra	ating
BORE SIZE	Bore Diameter	Outside Diameter	Ball Width	Race Width	Shoulder Diameter	Chamfer	Groove Diameter	Angle	Ball Diameter	Static Limit	Static Ultimate	Dynamic
CODE	+ 0.000 - 0.001	+ 0.000 - 0.001	+ 0.000 - 0.002	+ 0.010 0.000	Ref	Min	+ 0.005 - 0.005	Ref	Ref	Max	Max	Max
	in	in	in	in	in	in	in	deg	in	lbs	lbs	lbs
03	0.190	0.625	0.560	0.250	0.346	0.020	0.565	20	0.531	7,400	11,100	3,300
04	0.250	0.740	0.593	0.250	0.381	0.020	0.680	24	0.593	8,300	12,400	3,700
05	0.313	0.688	0.625	0.322	0.323	0.020	0.628	23	0.593	11,200	16,800	5,000
06	0.375	0.906	0.813	0.340	0.506	0.020	0.846	23	0.781	15,400	23,100	6,900
07	0.438	1.000	0.875	0.340	0.601	0.020	0.940	23	0.875	17,400	26,100	7,900
08	0.500	1.125	0.937	0.396	0.670	0.020	1.065	24	1.000	24,000	36,000	10,900
09	0.563	1.250	1.000	0.437	0.761	0.020	1.150	24	1.125	29,600	44,400	13,400
10	0.625	1.375	1.200	0.562	0.880	0.020	1.275	18	1.250	44,000	66,000	19,900
12	0.750	1.563	1.280	0.615	0.972	0.020	1.438	18	1.375	52,700	79,000	23,900
14	0.875	1.750	1.400	0.620	1.132	0.020	1.625	18	1.531	59,600	89,400	27,000
16	1.000	2.125	1.875	0.830	1.264	0.020	2.000	21	1.875	101,200	151,800	45,900
20	1.250	2.500	1.875	1.000	1.515	0.020	2.375	21	2.250	149,200	223,800	67,800
24	1.500	3.000	2.250	1.170	1.815	0.030	2.875	21	2.672	210,300	315,400	95,500
26	1.625	3.125	2.437	1.187	1.838	0.030	3.000	24	2.812	225,300	337,900	102,300
28	1.750	3.563	2.875	1.250	1.964	0.030	3.438	30	3.250	276,600	414,900	125,700

(1) Chamfered Type Only (2) Grooved Type Only

KSEAB-T Thrust Loaded, Lined Race

Self-Lubricating Spherical Bearings

Interchangeable with KNR-CT Series-Thrust Loaded

✓ Thrust Loaded Series

- ✓ Lined Race
- ✓ High Temperature—Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ For material, liner, and plating options (see page **12**)

KSEAB-T

	В	D	W	н	М	V	C ⁽¹⁾	Р	X	U	Axia	al Load Rat	ting
BORE SIZE	Bore Diameter	Outside Diameter	Ball Width	Race Width	Ball to Race	Ball to Face	Chamfer	Groove Diameter	Angle	Ball Diameter	Static Limit	Static Ultimate	Dynamic
CODE	+ 0.000 - 0.001	+ 0.000 - 0.001	+ 0.000 - 0.002	+ 0.010 0.000	+ 0.005 - 0.005	+ 0.005 - 0.005	Min	+ 0.005 - 0.005	Ref	Ref	Max	Max	Max
	in	in	in	in	in	in	in	in	deg	in	lbs	lbs	lbs
04	0.250	0.813	0.437	0.375	0.250	0.281	0.025	0.753	3	0.687	10,800	16,200	4,900
05	0.313	0.938	0.562	0.500	0.295	0.326	0.025	0.838	3	0.781	15,900	23,850	7,200
06	0.375	1.000	0.600	0.531	0.325	0.359	0.025	0.900	3	0.875	19,100	28,650	8,600
07	0.438	1.125	0.656	0.578	0.375	0.414	0.025	1.025	3	1.000	26,400	39,600	11,900
08	0.500	1.188	0.700	0.625	0.400	0.437	0.025	1.063	3	1.062	30,500	45,750	13,800
09	0.563	1.375	0.875	0.781	0.467	0.514	0.025	1.250	3	1.250	41,900	62,850	19,000
10	0.625	1.563	0.937	0.825	0.525	0.581	0.025	1.438	4	1.375	54,200	81,300	24,600
12	0.750	1.750	1.000	0.895	0.578	0.630	0.025	1.625	3	1.562	65,600	98,400	29,800
14	0.875	2.125	1.281	1.140	0.700	0.770	0.025	2.000	4	1.781	99,500	149,250	45,200
16	1.000	2.375	1.437	1.250	0.755	0.848	0.025	2.250	5	2.093	117,100	175,650	53,200
20	1.250	2.563	1.500	1.312	0.812	0.906	0.035	2.438	5	2.281	136,800	205,200	62,100
22	1.375	2.750	1.562	1.343	0.828	0.937	0.035	2.625	5	2.500	142,600	213,900	64,800
24	1.500	3.000	1.625	1.375	0.843	0.968	0.035	2.875	5	2.687	148,100	222,150	67,300
26	1.625	3.125	1.687	1.406	0.859	1.000	0.035	3.000	6	2.750	154,200	231,300	70,000
28	*1.7500	*3.2500	1.750	1.437	0.875	1.031	0.035	3.125	6	2.875	160,300	240,450	72,800
30	*1.8750	*3.3750	1.875	1.468	0.890	1.093	0.035	3.250	8	3.000	166,200	249,300	75,500
32	*2.0000	*3.5000	1.875	1.500	0.906	1.093	0.035	3.375	7	3.125	172,600	258,900	78,400
36	*2.2500	*3.9062	2.000	1.406	0.875	1.187	0.035	3.781	10	3.437	160,300	240,450	72,800
40	*2.5000	*4.1250	2.062	1.437	0.937	1.250	0.035	4.000	10	3.687	185,300	277,950	84,200
44	*2.7500	*4.3750	2.187	1.500	1.125	1.312	0.035	4.250	7	3.937	272,200	408,300	123,700
* +.0000 /000)8												

KSEAB-S Special Size Series, Lined Race

Self-Lubricating Spherical Bearings

Interchangeable with KNR-CS Series-Special Size

✓ Special Size Series

- ✓ Lined Race
- ✓ High Temperature—Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ For material, liner, and plating options (see page 12)

Groove

Туре

С

Size

16+

KSEAB-S

	В	D	W	н	Α	C ⁽¹⁾	P ⁽²⁾	X	U	Rad	ial Load Ra	iting
BORE SIZE	Bore Diameter	Outside Diameter	Ball Width	Race Width	Ball to Race	Ball to Face	Chamfer	Angle	Ball Diameter	Static Limit	Static Ultimate	Dynamic
CODE	+ 0.000 - 0.001	+ 0.000 - 0.001	+ 0.000 - 0.002	+ 0.010 0.000	+ 0.005 - 0.005	+ 0.005 - 0.005	Min	Ref	Ref	Max	Max	Max
	in	in	in	in	in	in	in	deg	in	lbs	lbs	lbs
16	1.000	1.625	0.875	0.750	1.140	0.020	1.500	5	1.437	68,500	102,700	31,100
20	1.250	2.000	1.093	0.937	1.406	0.020	1.875	5	1.781	108,700	163,000	49,400
24	1.500	2.438	1.312	1.125	1.711	0.030	2.313	5	2.156	160,600	240,900	72,900
28	1.750	2.813	1.531	1.312	1.995	0.030	2.688	5	2.515	221,000	331,500	100,400
30	1.875	*3.1250	1.625	1.343	2.295	0.030	3.000	6	2.812	255,200	382,800	115,900
32	2.000	*3.1875	1.750	1.500	2.281	0.030	3.063	5	2.875	291,300	436,900	132,300
36	2.250	*3.5625	1.969	1.678	2.466	0.030	3.438	6	3.156	359,300	538,900	163,300
40	2.500	*3.9375	2.187	1.875	2.733	0.030	3.813	5	3.500	447,300	670,900	203,200
44	2.750	*4.3750	2.406	2.062	3.038	0.030	4.250	5	3.875	547,300	820,900	248,700
48	3.000	*4.7500	2.625	2.250	3.342	0.030	4.625	5	4.250	657,500	986,200	298,800
52	*3.2500	**5.1250	2.844	2.437	3.710	0.032	5.000	5	4.675	786,900	1,180,300	357,600
56	*3.5000	**5.5000	3.062	2.625	4.003	0.032	5.375	5	5.040	916,100	1,374,100	416,300
60	*3.7500	**5.8750	3.281	2.812	4.276	0.032	5.750	5	5.390	1,051,600	1,577,400	477,900
64	*4.0000	**6.2500	3.500	3.000	4.562	0.032	6.125	5	5.750	1,199,000	1,798,500	544,900
68	*4.2500	**6.6250	3.719	3.187	4.867	0.044	6.500	5	6.125	1,359,400	2,039,100	617,800
72	*4.5000	**7.0000	3.937	3.375	5.141	0.044	6.875	5	6.475	1,523,900	2,285,800	692,600
76	*4.7500	**7.3750	4.156	3.562	5.414	0.044	7.250	5	6.825	1,697,200	2,545,800	771,300
80	*5.0000	**7.7500	4.375	3.750	5.706	0.044	7.625	5	7.190	1,884,700	2,827,000	856,500
88	*5.5000	**8.6250	4.938	4.125	6.351	0.125	8.500	6	8.045	2,328,200	3,492,300	1,058,100
96	*6.0000	**9.5000	5.438	4.500	7.033	0.125	9.375	7	8.890	2,814,800	4,222,200	1,279,300

(1) Chamfered Type Only (2) Grooved Type Only * +.0000 / -.0008 ** +.0000 / -.0010

Note: Size 48 and larger may be constructed with a two-piece welded outer race.

KAHR[®] Bearings Marine Applications

Rod End Bearings

Self-Lubricating

				ŀ	(SEA	R 06 Y	MR	Q 1 B	2 2 T			
xample:	KSEA	R	06	Y	м	R	Q	1	В	2	2	т
nenclature	e Bearing Line	Bearing Type	Bore Size	Series Type	Thread Type	Thread Direction	Liner Type	Ball Material	Ball OD Plating*	Race Material	Housing Material	Keyway Slot
Position	1	2	3	4	5	6	7	8	9	10	11	12
				•								
									<u> </u>			•
Position	1: Bearing	a Line				Pos	ition 7	: Liner Tv	'ne			
KSEA KAH	-IR® Self-Lub	ricating Ma	rine Proc	duct Line		Z	KAHR-L	ON® KSEA	Qualifie	d to EB-555	50	
		<u> </u>				Q	KAHR-L	ON® X12008	G Qualifie	ed to AS8182	20 & AS8193	4
Position	2: Bearing	д Туре							I			
R Rod E	nd Bearing					Pos	ition 8	, 10, 11: E	Ball, Race	, Housing	g Materia	s
						1	13-8 PH	CRES Stair	less AMS	6-5629		
Position	3: Bore Si	ize				2	17-4 PH	CRES Stair	less AMS	6-5643		
XX Bore S	ize Code (2 I	Digits, see o	datashee	t)		3	Inconel	718	AMS	6-5662 or AN	NS-5663	
					_ /	4	Titanium	6AL4V	AMS	6-4928		
Position	4: Series	Туре				5	316 Stai	nless	AMS	6-5653 or AN	NS-QQ-S-76	3
N Narrov	V	Lined F	Race			6	Inconel	625	AMS	6-5666		
P Narrov	V	Lined F	Race & B	ore		7	Monel K	-500	AMS	S-QQ-N-286		
W Wide		Lined F	Race			8	Monel 4	00	AMS	S-QQ-N-281		
Y Wide		Lined F	Race & B	ore		Othe for r	er option	s available. I art number	Please conta	act KAHR® E	Bearing	
E High M	lisalignment	Lined F	Race									
						/ Pos	ition 9	: Ball OD	Plating*			
Position	5: Thread	Туре				A	Chromiu	Im	AMS	S-QQ-C-320		
M Male						В	Ceramic		AMS	6-2437		\neg
F Female	e					С	Nickel		AMS	6-QQ-N-290		
						D	Cadmiur	m (Race OD	only) AMS	6-QQ-P-416		
Position	6: Thread	Directio	n		/	Ν	No Plati	ng				

*Side face plating is optional.

Other options available. Please contact ${\rm KAHR}^{\otimes}$ Bearing for proper part number.

Pos	sition 12: Keyway Slo	t
κ	Keyway Slot	NAS-513
Т	No Keyway Slot	

Note: Displayed loads (see datasheets) are based on a rod end body strength of 185,000 psi.

R Right Hand

Left Hand

This catalog offers some of the more standard sized spherical bearings. If a desired size is not found within this catalog, please contact **KAHR**[®] **Bearing** at 520-744-1000 x4735 for any

special size and geometry requests.

L.

Rod End Bearings

KSEAR-NM Narrow, Male, Lined Race

Self-Lubricating Rod End Bearings

- ✓ Narrow Series Male
- ✓ Lined Race
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar AS81935/4 & AS81935/8 (Formerly MIL-B-81935/4 & MIL-B-81935/8)
- ✓ Utilizes KSEAB-N Spherical Bearings (see page 14)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-NM

	В	D	W	н	F	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.031 - 0.031	UNF-3A UN-3A	Ref	Max
	in	in	in	in	in	in	in	deg	lbs
03	0.190	0.680	0.281	0.228	1.315	0.775	1/4-28	10	2,900
04	0.250	0.827	0.343	0.260	1.443	0.775	1/4-28	10	5,300
05	0.313	0.984	0.375	0.291	1.948	1.187	5/16-24	10	8,500
06	0.375	1.131	0.406	0.322	2.030	1.187	3/8-24	9	13,300
07	0.438	1.294	0.437	0.353	2.250	1.281	7/16-20	8	18,000
08	0.500	1.459	0.500	0.400	2.544	1.468	1/2-20	8	24,400
10	0.625	1.763	0.625	0.510	2.832	1.562	5/8-18	8	39,300
12	0.750	2.140	0.750	0.603	3.193	1.687	3/4-16	8	57,200
14	0.875	2.372	0.875	0.713	3.677	2.000	7/8-14	8	78,100
16	1.000	2.681	1.000	0.807	3.968	2.100	1-12	9	102,100

KSEAR-NF Narrow, Female, Lined Race

Self-Lubricating Rod End Bearings

✓ Narrow Series – Female

- ✓ Lined Race
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar AS81935/5 & AS81935/9 (Formerly MIL-B-81935/5 & MIL-B-81935/9)
- ✓ Utilizes KSEAB-N Spherical Bearings (see page 14)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-NF

	В	D	W	н	F	Ν	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Shank Diameter	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.010 - 0.010	Min	UNF-3B UN-3B	Ref	Max
	in	in	in	in	in	in	in	in	deg	lbs
03	0.190	0.680	0.281	0.228	1.210	0.329	0.625	1/4-28	10	2,900
04	0.250	0.827	0.343	0.260	1.338	0.329	0.625	1/4-28	10	5,300
05	0.313	0.984	0.375	0.291	1.566	0.413	0.750	5/16-24	10	8,500
06	0.375	1.131	0.406	0.322	1.908	0.501	1.000	3/8-24	9	13,300
07	0.438	1.294	0.437	0.353	2.125	0.584	1.125	7/16-20	8	18,000
08	0.500	1.459	0.500	0.400	2.356	0.672	1.250	1/2-20	8	24,400
10	0.625	1.763	0.625	0.510	2.707	0.845	1.375	5/8-18	8	39,300
12	0.750	2.140	0.750	0.603	3.193	1.017	1.625	3/4-16	8	57,200
14	0.875	2.372	0.875	0.713	3.677	1.187	1.875	7/8-14	8	78,100
16	1.000	2.681	1.000	0.807	4.101	1.356	2.125	1-12	9	102,100

KSEAR-PM Narrow, Male, Lined Race & Bore

Self-Lubricating Rod End Bearings

- ✓ Narrow Series Male
- ✓ Lined Race & Bore
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar AS81935/4 & AS81935/8 (Formerly MIL-B-81935/4 & MIL-B-81935/8)
- ✓ Utilizes KSEAB-P Spherical Bearings (see page 15)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-PM

	В	D	W	н	F	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.031 - 0.031	UNF-3A UN-3A	Ref	Max
	in	in	in	in	in	in	in	deg	lbs
04	0.251	0.827	0.343	0.260	1.443	0.775	1/4-28	10	5,300
05	0.314	0.984	0.375	0.291	1.948	1.187	5/16-24	10	8,500
06	0.376	1.131	0.406	0.322	2.030	1.187	3/8-24	9	13,300
07	0.439	1.294	0.437	0.353	2.250	1.281	7/16-20	8	18,000
08	0.501	1.459	0.500	0.400	2.544	1.468	1/2-20	8	24,400
10	0.626	1.763	0.625	0.510	2.832	1.562	5/8-18	8	39,300
12	0.751	2.140	0.750	0.603	3.193	1.687	3/4-16	8	57,200
14	0.876	2.372	0.875	0.713	3.677	2.000	7/8-14	8	78,100
16	1.001	2.681	1.000	0.807	3.968	2.100	1-12	9	102,100

KSEAR-PF Narrow, Female, Lined Race & Bore

Self-Lubricating Rod End Bearings

- ✓ Narrow Series Female
- ✓ Lined Race & Bore
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar AS81935/5 & AS81935/9 (Formerly MIL-B-81935/5 & MIL-B-81935/9)
- ✓ Utilizes KSEAB-P Spherical Bearings (see page 15)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-PF

	В	D	W	н	F	Ν	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Shank Diameter	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.010 - 0.010	Min	UNF-3B UN-3B	Ref	Max
	in	in	in	in	in	in	in	in	deg	lbs
04	0.251	0.827	0.343	0.260	1.338	0.329	0.625	1/4-28	10	5,300
05	0.314	0.984	0.375	0.291	1.566	0.413	0.750	5/16-24	10	8,500
06	0.376	1.131	0.406	0.322	1.908	0.501	1.000	3/8-24	9	13,300
07	0.439	1.294	0.437	0.353	2.125	0.584	1.125	7/16-20	8	18,000
08	0.501	1.459	0.500	0.400	2.356	0.672	1.250	1/2-20	8	24,400
10	0.626	1.763	0.625	0.510	2.707	0.845	1.375	5/8-18	8	39,300
12	0.751	2.140	0.750	0.603	3.193	1.017	1.625	3/4-16	8	57,200
14	0.876	2.372	0.875	0.713	3.677	1.187	1.875	7/8-14	8	78,100
16	1.001	2.681	1.000	0.807	4.101	1.356	2.125	1-12	9	102,100

KSEAR-WM Wide, Male, Lined Race

Self-Lubricating Rod End Bearings

- ✓ Wide Series—Male
- ✓ Lined Race
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar AS81935/1 & AS81935/6 (Formerly MIL-B-81935/1 & MIL-B-81935/6)
- ✓ Utilizes KSEAB-W Spherical Bearings (see page 16)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-WM

	В	D	W	н	F	L	E	X	Load
BORE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.031 - 0.031	UNF-3A UN-3A	Ref	Max
	in	in	in	in	in	in	in	deg	lbs
03	0.190	0.806	0.437	0.337	1.562	0.968	5/16-24	15	6,900
04	0.250	0.806	0.437	0.337	1.562	0.968	5/16-24	15	6,900
05	0.313	0.900	0.437	0.327	1.875	1.187	5/16-24	14	8,300
06	0.375	1.025	0.500	0.416	1.938	1.187	3/8-24	8	10,100
07	0.438	1.150	0.562	0.452	2.125	1.281	7/16-20	10	10,800
08	0.500	1.337	0.625	0.515	2.438	1.468	1/2-20	9	21,300
10	0.625	1.525	0.750	0.577	2.625	1.562	5/8-18	12	23,600
12	0.750	1.775	0.875	0.640	2.875	1.687	3/4-16	13	31,600
14	0.875	2.025	0.875	0.765	3.375	2.000	7/8-14	6	36,700
16	1.000	2.775	1.375	1.015	4.125	2.343	1 1/4-12	12	82,900
20	1.250	2.875	1.500	1.140	5.000	3.125	1 1/4-12	14	66,100
24	1.500	3.500	1.687	1.218	6.250	3.750	1 1/2-12	13	126,100
28	1.750	3.875	1.812	1.312	7.000	4.375	1 3/4-12	12	146,800
32	2.000	4.375	1.937	1.375	7.875	5.000	2-12	13	203,900
36	2.250	5.000	2.000	1.406	9.000	5.625	2 1/4-12	12	260,500
40	2.500	5.437	2.062	1.437	9.875	6.250	2 1/2-12	11	292,300
44	2.750	5.750	2.187	1.500	10.625	6.750	2 3/4-12	12	332,000

KSEAR-WF Wide, Female, Lined Race

Self-Lubricating Rod End Bearings

Interchangeable with KNRF Series-Female

✓ Wide Series – Female

- ✓ Lined Race
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar AS81935/2 & AS81935/7 (Formerly MIL-B-81935/2 & MIL-B-81935/7)
- ✓ Utilizes KSEAB-W Spherical Bearings (see page 16)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-WF

	В	D	W	н	F	N	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Shank Diameter	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.010 - 0.010	Min	UNF-3B UN-3B	Ref	Max
	in	in	in	in	in	in	in	in	deg	lbs
03	0.190	0.806	0.437	0.337	1.375	0.422	0.750	5/16-24	15	6,900
04	0.250	0.806	0.437	0.337	1.469	0.422	0.750	5/16-24	15	6,900
05	0.313	0.900	0.437	0.327	1.625	0.485	0.875	3/8-24	14	8,300
06	0.375	1.025	0.500	0.416	1.812	0.547	1.000	3/8-24	8	10,100
07	0.438	1.150	0.562	0.452	2.000	0.610	1.125	7/16-20	10	10,800
08	0.500	1.337	0.625	0.515	2.250	0.735	1.250	1/2-20	9	21,300
10	0.625	1.525	0.750	0.577	2.500	0.860	1.375	5/8-18	12	23,600
12	0.750	1.775	0.875	0.640	2.875	0.985	1.625	3/4-16	13	31,600
14	0.875	2.025	0.875	0.765	3.375	1.110	1.875	7/8-14	6	36,700
16	1.000	2.775	1.375	1.015	4.125	1.688	2.125	1 1/4-12	12	82,900

KSEAR-YM Wide, Male, Lined Race & Bore

Self-Lubricating Rod End Bearings

- ✓ Wide Series Male
- ✓ Lined Race & Bore
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- Similar AS81935/1 & AS81935/6 (Formerly MIL-B-81935/1 & MIL-B-81935/6)
- ✓ Utilizes KSEAB-Y Spherical Bearings (see page 17)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-YM

	В	D	W	н	F	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.031 - 0.031	UNF-3A UN-3A	Ref	Max
	in	in	in	in	in	in	in	deg	lbs
05	0.314	0.900	0.437	0.327	1.875	1.187	5/16-24	14	8,300
06	0.376	1.025	0.500	0.416	1.938	1.187	3/8-24	8	10,100
07	0.439	1.150	0.562	0.452	2.125	1.281	7/16-20	10	10,800
08	0.501	1.337	0.625	0.515	2.438	1.468	1/2-20	9	21,300
10	0.626	1.525	0.750	0.577	2.625	1.562	5/8-18	12	23,600
12	0.751	1.775	0.875	0.640	2.875	1.687	3/4-16	13	31,600
14	0.876	2.025	0.875	0.765	3.375	2.000	7/8-14	6	36,700
16	1.001	2.775	1.375	1.015	4.125	2.343	1 1/4-12	12	82,900

KSEAR-YF Wide, Female, Lined Race & Bore Self-Lubricating Rod End Bearings

Interchangeable with KNRF Series-Female

- ✓ Wide Series Female
- ✓ Lined Race & Bore
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ Similar AS81935/2 & AS81935/7 (Formerly MIL-B-81935/2 & MIL-B-81935/7)
- ✓ Utilizes KSEAB-Y Spherical Bearings (see page 17)
- ✓ For material, liner, and plating options (see page 22)

۱۸*ι* D в Å X KAHR-LON LINER Е N

KSEAR-YF

	В	D	W	н	F	Ν	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Shank Diameter	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.002	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.010 - 0.010	Min	UNF-3B UN-3B	Ref	Max
	in	in	in	in	in	in	in	in	deg	lbs
05	0.314	0.900	0.437	0.327	1.625	0.485	0.875	3/8-24	14	8,300
06	0.376	1.025	0.500	0.416	1.812	0.547	1.000	3/8-24	8	10,100
07	0.439	1.150	0.562	0.452	2.000	0.610	1.125	7/16-20	10	10,800
08	0.501	1.337	0.625	0.515	2.250	0.735	1.250	1/2-20	9	21,300
10	0.626	1.525	0.750	0.577	2.500	0.860	1.375	5/8-18	12	23,600
12	0.751	1.775	0.875	0.640	2.875	0.985	1.625	3/4-16	13	31,600
14	0.876	2.025	0.875	0.765	3.375	1.110	1.875	7/8-14	6	36,700
16	1.001	2.775	1.375	1.015	4.125	1.688	2.125	1 1/4-12	12	82,900

KSEAR-EM High Misalignment, Male, Lined Race Self-Lubricating Rod End Bearings

Interchangeable with KNRME Series - High Misalignment Male

✓ High Misalignment Series – Male

- ✓ Lined Race
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ Utilizes KSEAB-E Spherical Bearings (see page 18)
- ✓ For material, liner, and plating options (see page **22**)

KSEAR-EM

	В	D	W	Н	F	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.005 - 0.005	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.031 - 0.031	UNF-3A UN-3A	Ref	Max
	in	in	in	in	in	in	in	deg	lbs
03	0.190	0.781	0.560	0.265	1.562	1.000	5/16-24	20	4,800
04	0.250	1.000	0.593	0.265	1.938	1.250	3/8-24	24	8,800
05	0.313	1.125	0.625	0.337	2.125	1.375	7/16-20	23	19,800
06	0.375	1.125	0.813	0.355	2.125	1.375	7/16-20	23	9,400
07	0.438	1.312	0.875	0.355	2.438	1.500	1/2-20	23	14,200
08	0.500	1.500	0.937	0.411	2.625	1.625	5/8-18	24	20,000
10	0.625	1.750	1.200	0.577	2.875	1.750	3/4-16	18	27,000
12	0.750	2.000	1.280	0.630	3.375	1.875	7/8-14	18	34,900
14	0.875	2.200	1.400	0.635	3.750	2.000	7/8-14	18	36,500
16	1.000	2.750	1.875	0.845	4.125	2.125	1 1/4-12	21	68,200
20	1.250	3.125	1.875	1.015	5.000	2.875	1 1/4-12	21	80,000
24	1.500	3.750	2.250	1.185	6.500	3.750	1 1/2-12	21	113,100
28	1.750	4.375	2.875	1.265	8.000	5.000	2-12	30	155,000

KSEAR-EF High Misalignment, Female, Lined Race Self-Lubricating Rod End Bearings

Interchangeable with KNRFE Series - High Misalignment Female

- ✓ High Misalignment Series Female
- ✓ Lined Race
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ Utilizes KSEAB-E Spherical Bearings (see page 18)
- ✓ For material, liner, and plating options (see page 22)

KSEAR-EF

	В	D	W	н	F	N	L	E	X	Load
BORE SIZE	Bore Diameter	Head Diameter	Ball Width	Body Width	Body Length	Shank Diameter	Thread Length	Threads	Angle	Radial Ultimate
CODE	+ 0.000 - 0.001	+ 0.010 - 0.010	+ 0.000 - 0.005	+ 0.005 - 0.005	+ 0.010 - 0.010	+ 0.010 - 0.010	Min	UNF-3B UN-3B	Ref	Max
	in	in	in	in	in	in	in	in	deg	lbs
03	0.190	0.781	0.560	0.265	1.375	0.437	0.750	5/16-24	20	4,800
04	0.250	1.000	0.593	0.265	1.625	0.562	0.937	3/8-24	24	8,800
05	0.313	1.125	0.625	0.337	1.812	0.625	1.062	7/16-20	23	19,800
06	0.375	1.125	0.813	0.355	1.812	0.625	1.062	7/16-20	23	9,400
07	0.438	1.312	0.875	0.355	2.125	0.750	1.125	1/2-20	23	14,200
08	0.500	1.500	0.937	0.411	2.625	0.875	1.500	5/8-18	24	20,000
10	0.625	1.750	1.200	0.577	2.875	1.000	1.750	3/4-16	18	27,000
12	0.750	2.000	1.280	0.630	3.375	1.125	1.875	7/8-14	18	34,900
14	0.875	2.200	1.400	0.635	3.750	1.125	2.000	7/8-14	18	36,500
16	1.000	2.750	1.875	0.845	4.125	1.688	2.125	1 1/4-12	21	68,200
20	1.250	3.125	1.875	1.015	5.000	1.688	3.125	1 1/4-12	21	80,000

Journal Bearings

Self-Lubricating

			KSE	EA J 008	3 F 144 Z	8 E			
Example:	KSEA	J	800	F	144	Z	8	Е	
Nomenclature	Bearing Line	Bearing Type	Bore Size	Series Type	Race Type	Liner Type	Ball Material	Ball OD Plating*	
Position	1	2	3	4	5	6	7	8	
Position 1: Bearing Line Position 6: Liner Type									
SEA KAHR® Self-L	ubricating Mar	rine Product Lir	ne	Z	KAHR-LON® K	SEA Qua	lified to EB-55	50	
				Q	KAHR-LON® X	1200S Qua	lified to AS818	20 & AS81934	
Position 2: Bearing	ing Type			Pos	sition 7: Jou	rnal Materi	als		
o ocuma Boaring				1	13-8 PH CRES	Stainless A	MS-5629		
Position 3: Bore	Size			2	17-4 PH CRES	Stainless A	MS-5643		
🗙 Bore Size Code ((3 Digits, see d	latasheet)		3	Inconel 718	A	MS-5662 or Al	MS-5663	
				4	Titanium 6AL4	/ A	MS-4928		
Position 4: Serie	s Type			5	316 Stainless	A	MS-5653 or Al	MS-QQ-S-763	
S Straight	Lined E	Bore		6	Inconel 625	A	MS-5666		
F Flanged	Lined E	Bore & Flange		7	Monel K-500	A	MS-QQ-N-286	3	
G Flanged	Lined E	Bore		8	Monel 400	A	MS-QQ-N-281		
Position 5: Leng	th Size			Oth for p	er options availa proper part num	able. Please co ber.	ontact KAHR® I	Bearing	
XX Length Size Cod	e (3 Digits, see	e datasheet)		Dee	itian 0. OD	Diotine*			
l				Pos	Sition 8: OD	-naung"			

Pos	sition 8: OD Plating*	
D	Cadmium (Race OD only)	AMS-QQ-P-416
Е	Zinc-Nickel	AMS-QQ-P-416, TYPE II, CLASS 2
Ν	No Plating	

*Adjacent surfaces plating is optional.

Other options available. Please contact ${\sf KAHR}^{\otimes}$ Bearing for proper part number.

This catalog offers some of the more standard sized spherical bearings. If a desired size is not found within this catalog, please contact **KAHR**[®] **Bearing** at 520-744-1000 x4735 for any special size and geometry requests.

Note: Displayed loads (see datasheets) are based on KAHR-LON® KSEA liner strength of 75,000 psi.

Journal Bearings Self-Lubricating

520-744-1000 | info@sargentaerospace.com

35

KSEAJ-S Straight, Lined Bore

Self-Lubricating Journal Bearings

Interchangeable with KNRJ Series - Straight

- ✓ Straight Series
- ✓ Lined Bore
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ For material, liner, and plating options (see page 34)

BORE		В		D	LENGTH		L	LENGTH		L
SIZE	Bore D	iameter	Outside	Diameter	SIZE	Journa	l Length	SIZE	Journa	Length
CODE	i	in	i	n	CODE	i	n	CODE	i	n
004	0.253		0.377		008	0.250		066	2 062	
005	0.315		0.439		009	0.281		068	2 125	
006	0.378		0.564		010	0.312		070	2.187	
007	0.440		0.627		011	0.343		072	2.250	
008	0.503		0.689		012	0.375		074	2.312	
009	0.565		0.752		014	0.437		076	2.375	+ 0.005
010	0.628		0.877		016	0.500		078	2.437	- 0.005
012	0.754		1.002	+ 0.0000	018	0.562		080	2.500	
014	0.879		1.127	- 0.0005	020	0.625		082	2.562	
016	1.004	+ 0.0000	1.252		022	0.687		084	2.625	
018	1.129	- 0.0010	1.377		024	0.750		086	2.687	
020	1.254		1.502		026	0.812		088	2.750	
022	1.380		1.628		028	0.875		096	3.000	
024	1.505		1.753		030	0.937	. 0.005	104	3.250	
026	1.630		1.878 2.003		032	1.000		112	3.500	
028	1.755				034	1.062	+ 0.005	120	3.750	
030	1.880		2.128		036	1.125	0.000	128	4.000	
032	2.005		2.378		038	1.187		136	4.250	. 0.010
036	2.255		2.628	+ 0.0000	040	1.250		144	4.500	- 0.010
040	2.506		2.878	- 0.0010	042	1.312		152	4.750	
044	2.756		3.128		044	1.375		160	5.000	
048	3.006		3.503		046	1.437		168	5.250	
052	3.256		3.753		048	1.500		176	5.500	
056	3.506		4.003	. 0.0000	050	1.562		184	5.750	
060	3.756	1 0 0000	4.253	- 0.0015	052	1.625		192	6.000	
064	4.006	- 0.0020	4.503		054	1.687		208	6.500	
068	4.256		4.753		056	1.750		224	7.000	
072	4.507		5.003		058	1.812		240	7.500	+ 0.030
076	4.757		5.253		060	1.875		256	8.000	- 0.030
080	5.007		5.503		062	1.937		272	8.500	
088	5.507		6.003	+ 0.0000	064	2.000	J	288	9.000	
096	6.007		6.503	- 0.0020						
104	6.507	+ 0 0000	7.003		Note: The length tabulation block (L) is intended as an aid for ordering and					
112	7.007	- 0.0030	7.503		not to imply that all lengths listed are available or suggested for all par					l part
120	7.507		8.003		numbers lis	itea.				
128	8.007		8.503							

KSEARJ-S

KSEAJ-F & KSEAJ-G Flanged, Lined Bore & Flange

Self-Lubricating Journal Bearings

Interchangeable with KNRJ-UD Series - Flanged

- ✓ Flanged Series
- ✓ Type 'F' for Lined Bore & Flange
- ✓ Type 'G' for Lined Bore only
- ✓ High Temperature Low Wear
- ✓ -65°F to +325°F (-53.9°C to 162.8°C)
- ✓ For material, liner, and plating options (see page 34)

KSEARJ-F & KSEARJ-F

BORE	l	В	[C	l	н		F	LENGTH		L	LENGTH		L			
SIZE	Bore D	iameter	Outside	Diameter	Flange I	Diameter	Flange	Width	SIZE	Journal	Length	SIZE	Journa	Length			
CODE	i	n	i	n	i	n	i	n	CODE	i	n	CODE	i	n			
004	0.253		0.377		0.500				008	0.250		066	2.062				
005	0.315		0.439		0.562				009	0.281		068	2.125				
006	0.378		0.564		0.625				010	0.312		070	2.187				
007	0.440		0.627		0.750				011	0.343		072	2.250				
008	0.503		0.689		0.875		0.125	125	012	0.375		074	2.312				
009	0.565		0.752		1.062				014	0.437		076	2.375	+ 0.005			
010	0.628		0.877		1.188				016	0.500		078	2.437	- 0.005			
012	0.754		1.002	+ 0.0000	1.312				018	0.562		080	2.500				
014	0.879		1.127	- 0.0005	1.500				020	0.625		082	2.562				
016	1.004	+ 0.0000	1.252		1.750				022	0.687		084	2.625				
018	1.129	- 0.0010	1.377		1.890	+ 0.010			024	0.750		086	2.687				
020	1.254		1.502		2.015	- 0.010			026	0.812		088	2.750				
022	1.380		1.628		2.140				028	0.875		096	3.000				
024	1.505		1.753		2.265				030	0.937		104	3.250				
026	1.630		1.878		2.390				032	1.000		112	3.500				
028	1.755		2.003		2.515				034	1.062	+ 0.005	120	3.750				
030	1.880		2.128		2.640				036	1.125	- 0.005	128	4.000				
032	2.005		2.378		3.000		0.187	+ 0.005	038	1.187		136	4.250				
036	2.255		2.628	+ 0.0000	3.250				- 0.005	040	1.250		144	4.500	+ 0.010		
040	2.506		2.878	- 0.0010	3.500									042	1.312		152
044	2.756		3.128		3.750				044	1.375		160	5.000				
048	3.006		3.503		4.000				046	1.437		168	5.250				
052	3.256		3.753		4.250				048	1.500		176	5.500				
056	3.506		4.003		4.500				050	1.562		184	5.750				
060	3.756	1	4.253	+ 0.0000	4.750	+ 0.015			052	1.625		192	6.000				
064	4.006	+0.0000	4.503	- 0.0013	5.000	- 0.015			054	1.687		208	6.500				
068	4.256	- 0.0020	4.753		5.250				056	1.750		224	7.000				
072	4.507		5.003		5.500			1	058	1.812		240	7.500	+ 0.030			
076	4.757		5.253		5.750				060	1.875		256	8.000	- 0.030			
080	5.007		5.503		6.000				062	1.937		272	8.500				
088	5.507		6.003		6.500				064	2.000		288	9.000				
096	6.007		6.503	+ 0.0000	7.000		0.250										
104	6.507		7.003	0.0020	7.500	+ 0.030			Note: The length tabulation block (L) is intended for ordering and not to imply that all lengths lister				tended as	an aid			
112	7.007	+0.0000 -0.0030	7.503		8.000	- 0.030	- 0.030						ths listed	are			
120	7.507	0.0000	8.003		8.500				available or suggested for all part numbers lis			rs listed.					
128	8.007		8.503		9.000												

Appendix A:

Staking Retention Groove

KAHR[®] **Bearing** recommends that the installation procedures set out in NAS 0331 be followed. NAS 0331 provides the formulas for determining the recommended swaging loads for different sizes of bearings, in addition to the formulas for determining proof load testing of these installed bearings.

KAHR[®] follows the military specifications for staking grooves when designing bearings. The housing that the bearing is being installed into should have a chamfer related to the groove size, as seen in the illustration below.

TYPE B

Appendix B: Rod End Keyway Slot

When specified in ordering a rod end bearing (see Rod End Designation) a keyway per NAS 513 is added. Keyways can be added to both male (externally threaded) and female (internally threaded) rod ends. NAS 513 defines keyway dimensions for up to 2 1/4 inch thread diameters.

R

Thread I	Diameter	G	F	R	D
(R	ef.)	+ 0.005 0.000	+ 0.000 - 0.005	-	+ 0.005 0.000
1/4	0.250	0.062	0.201	0.255	0.056
5/16	0.312	0.062	0.260	0.255	0.056
3/8	w0.375	0.093	0.311	0.255	0.056
7/16	0.437	0.093	0.370	0.255	0.069
1/2	0.500	0.093	0.436	0.255	0.069
9/16	0.562	0.125	0.478	0.255	0.077
5/8	0.625	0.125	0.541	0.255	0.077
3/4	0.750	0.125	0.663	0.255	0.077
7/8	0.875	0.156	0.777	0.318	0.086
1	1.000	0.156	0.900	0.318	0.094
1 1/8	1.125	0.187	1.010	0.382	0.094
1 1/4	1.250	0.187	1.136	0.382	0.116
1 3/8	1.375	0.250	1.236	0.445	0.116
1 1/2	1.500	0.250	1.361	0.445	0.116
1 5/8	1.625	0.250	1.477	0.445	0.129
1 3/4	1.750	0.312	1.589	0.508	0.129
1 7/8	1.875	0.312	1.714	0.508	0.129
2	2.000	0.312	1.839	0.508	0.129
2 1/8	2.125	0.312	1.955	0.508	0.129
2 1/4	2.250	0.312	2.080	0.508	0.129
2 1/2	2.500	0.312	2.330	0.508	0.129
2 3/4	2.750	0.312	2.580	0.508	0.129
3	3.000	0.312	2.830	0.508	0.129

MALE CONFIGURATION

FEMALE CONFIGURATION

KAHR-LON[®] X1200S PTFE Self-Lubricating Liner System

Technical Data Sheet | TDS-100

Description

Developed by Kahr Bearing, Kahr-Lon[®] X1200S is an engineered composite self-lubricating liner system that provides longer life and low friction for aerospace bearing applications. This liner system is ideal in low speed applications, intermittent to continuous oscillation, with high alternating loads. Kahr-Lon[®] X1200S has a proven pedigree as the superior aerospace liner system since its development in the 1960's. The proprietary architecture of Kahr-Lon[®] X1200S liner contains a blend of polytetrafluoroethylene (PTFE) material suspended in a phenolic based resin. This lubricant system is impregnated into a custom designed woven fabric, which provides structural strength and resistance to cold flow under load. The liner is bonded with Kahr Bearing's proprietary high performance thermosetting adhesive cured under heat and pressure to produce the industry's strongest bond. Once bonded, this liner system is resistance to high compressive loads, shear loads and impermeable to contamination under a variety of conditions. Kahr-Lon[®] X1200S self-lubricating liner system is the lowest friction liner system in the industry.

Qualification

- SAE AS81820 (Formerly MIL-B-81820) SAE AS8942 (Formerly MIL-B-8942)
- SAE AS81934 (Formerly MIL-B-81934) SAE AS8943 (Formerly MIL-B-8943)

Physical Properties:				
Thickness	0.009 to 0.011	in	0.23 to 0.28	mm
Density	0.047	lb/in ³	1.30	gm/cm ³
Color	Brown			
Engineering Data:				
Operating Temperature	-65 to 325	°F	-54 to 163	°C
Coefficient of Friction*	0.02 to 0.10			
Static Limit	80,000	psi	552	Мра
Static Ultimate	100,000	psi	689	Мра
Max Dynamic Bearing Load*	37,500	psi	257	Мра
Continuous Dynamic Bearing Load*	30,000	psi	207	Мра
Max Wear Surface Velocity*	3	ft/min	0.015	m/s
Approximate Compression Modulus	8 x 105	psi	5515	Мра

*Laboratory ambient conditions. May vary based on operation and temperature conditions

Fluid Compatibility:

- MIL-PRF-5606, MIL-PRF-83282, SKYDROL® Hydraulic Fluids MIL-PRF-7808 Lubricating Oil
- MIL-DTL-5624 Turbine Fuel AS8243 Anti-Icing Fluid Water

Applications

- Landing Gear Shock Strut Bearings, Steering Collars/Torque Tubes, Axle Retainers/Tow Fittings
- Actuation Bearings Flight Control Bearings Support Bearings Airframe Bearings Space Mechanisms
- Helicopter Swashplate Bearings

PROPRIETARY NOTICE

KAHR-LON® X1200S

PTFE Self-Lubricating Liner System

Technical Data Sheet | TDS-100

PROPRIETARY NOTICE

KAHR-LON[®] KSEA PTFE Self-Lubricating Submergible Liner System

Technical Data Sheet | TDS-205

Description

Developed by Kahr Bearing, Kahr-Lon[®] KSEA liner is an engineered composite self-lubricating liner system that provides longer life and low friction for underwater bearing applications. This liner system is ideal in submerged applications with low speeds, intermittent to continuous oscillation, and high alternating loads. Kahr-Lon[®] KSEA liner is proven to meet the industries increasing demands, and passed all performance requirements of General Dynamics Electric Boat specification EB-5550, and the US Navy's underwater cathodic disbandment testing. The architecture of Kahr-Lon[®] KSEA liner contains a proprietary blend of polytetrafluoroethylene (PTFE) material suspended in a phenolic based resin. This lubricant system is impregnated into a custom designed woven fabric, which provides structural strength and resistance to cold flow under load. The liner is bonded with a high performance thermosetting adhesive cured under heat and pressure producing the industry's strongest bond, impermeable to salt water contamination. Once bonded, this composite liner system is resistance to high compressive and shear loads under a variety of conditions. Kahr-Lon[®] KSEA self-lubricating liner system is the industries only self-lubricating liner system for fully submerged, under-water applications.

Qualification

• General Dynamics Electric Boat specification EB-5550

Physical Properties:											
Thickness	0.009 to 0.012	in	0.23 to 0.30	mm							
Density	0.05	lb/in ³	1.38	gm/cm ³							
Color	Brown										
Engineering Data:											
Operating Temperature	-65 to 325	°F	-54 to 163	°C							
Coefficient of Friction*	0.05 to 0.20										
Static Limit	80,000	psi	552	Мра							
Static Ultimate	100,000	psi	689	Мра							
Max Dynamic Bearing Load*	37,500	psi	257	Мра							
Continuous Dynamic Bearing Load*	30,000	psi	207	Мра							
Max Wear Surface Velocity*	3	ft/min	0.015	m/s							

*Salt water submerged conditions. May vary based on application pressure and conditions

Fluid Compatibility:

- MIL-PRF-5606, MIL-PRF-83282, SKYDROL® Hydraulic Fluids MIL-PRF-7808 Lubricating Oil
- MIL-DTL-5624 Turbine Fuel AS8243 Anti-Icing Fluid Water Salt Water

Applications

• Submerged Applications

PROPRIETARY NOTICE

KAHR-LON® KSEA

PTFE Self-Lubricating Submergible Liner System

PROPRIETARY NOTICE

Innovation. Commitment. Quality.

RBC Bearings[®] has been producing bearings in the USA since 1919. In addition to unique custom bearings, RBC Bearings[®] offers a full line of standard industrial and aerospace bearings, including:

Spherical Bearings

- MS approved to AS81820 (Formerly MIL-B-81820)
- Self-lubricating
 Metal-to-Metal
- Loader slots High temperature · Low coefficient of friction
- Special configurations and materials

Thin Section Ball Bearings

- · Standard cross sections to one inch
- · Stainless steel and other materials are available
- Sizes to 40" · Seals available on all sizes and
- standard cross sections
- Super duplex configurations

Journal Bearings

- MS approved to AS81934 (Formerly MIL-B-81934)
- Plain and flanged
 Self-lubricating • High temperature • High loads
- Available in inch and metric sizes

Airframe Control Ball Bearings

- MS approved to AS7949 (Formerly MIL-B-7949)
- Single and double row Radial, self-aligning, and pulley series
- 52100 Cad plated and 440C stainless
- Zinc Nickel plated

Ball Bearing Rod Ends

- MS approved to AS6039 (Formerly MIL-B-6039)
- Various shank configurations
- Low coefficient of friction
- Advanced AeroCres[®] materials available

Rings and Seals

- · Solutions for any pneumatic
- and hydraulic applications
- Seals from .5" to 55" diameter
- Cast Iron to Rene 41
- · Precision machined & wire rings to tight tolerances

Specialty Fasteners

- Hollow Bolts, Fuse Pins, Solid Bolts (Standards), **Customed Machined Parts & Nuts**
- Hot Headed, Thread Rolled, HVOF Coated
- Large Diameter over 3/4"

Hydraulic Actuators

Contact RBC Bearings® for product specific information - or see rbcbearings.com/patents

© 2006-2024 RBC Bearings Incorporated. All rights reserved.

- 2-Position Fluid Hydraulic
- Auto or Manual Mechanical Locking
- Lock Sensing/Position Sensing
- Flow/Directional Control Valves: Solenoid/Manual

- Exotic materials 3, 3.5, 4 and 5 Axis
- Horizontal and Vertical Milling
- Lathes, Hot Head, Gearing,
- Heat Treat, Special Processes

RBC 03/24

SARGENT

This document contains a general overview of the products and features described herein. It is solely for informational purposes, does not represent a warranty of the information contained herein, and is not to be construed as an offer to sell or a solicitation to buy. Contact RBC Bearings® for detailed information suitable to your specific applications. RBC Bearings® reserves the right to modify its products and related product information at any time without prior notice. Some of the products listed herein may be covered by one or more issued and pending U.S. or foreign patents.

www.rbcbearings.com

- **Rod End Bearings**
- MS approved to AS81935 (Formerly MIL-B-81935)
- Self-lubricating Metal-to-Metal
- Loader slots High temperature
- Low coefficient of friction
- Special configurations and materials

Track Rollers

- MS approved to AS39901 (Formerly MIL-B-3990)
- ATF single row and ATL double row
- Sealed with lube holes and grooves
- · Heavy duty cross sections
- Advanced AeroCres® materials available

Cam Followers

- MS approved to AS39901 (Formerly MIL-B-3990)
- Advanced AeroCres[®] materials available
- Maximum corrosion resistance
- Superior lubricants & seals to reduce maintenance

Load Slot Bearings

- Spherical and rod end designs
- Superior ball-to-race conformity
- Reduced maintenance cost
- · Variety of race materials available

Specials

- Many specialty bearings, custom-designed and configured for diverse aerospace applications
- Capability for advanced aerospace specialty
- corrosion resistant and high temperature materials

Control Rods

- Swaging up to 14' length and 4" dia
- Nadcap and customer special process approvals including NDT
- Surface treatments, CNC Machining,
- Flash Welding, Aluminum Heat Treat
- Design and build to print

Ducting Solutions

- Solutions for pneumatic ducting
- Patented couplings
- Temperatures 450° to 1,500°F
- Engines, Aircraft, APUs

Machined Components