As the World Leader in self-lubricating liner systems™ Transport Dynamics offers a full range of proprietary maintenance free liner systems. These liner systems have been the preferred option for critical aerospace applications since they were originally developed by Transport Dynamics in 1957.

A self-lubricating liner system features the low friction properties of polytetrafluoroethylene (PTFE), fibers with the rigidity and thermal stability of high temperature resin and structural fiber. The benefit is to achieve consistent low-friction performance without needing external lubrication.

Performance Benefits
- Low frictional coefficient, $\mu \sim 0.045$ to 0.1
- No re-lubrication or maintenance
- Environmentally friendly
- Vibration dampening characteristics
- Compatible with most common aviation fluids

These liner systems can also be custom bonded to any surface to provide the same operational benefits as part of our Bond Only offering.

Applications
- High Temperature – Engine
- High Speed – Helicopter
- Actuation Systems – Aircraft
- High Load/Long Life – MS Series
- Custom Bond Only

The use of a Transport Dynamics liner in a spherical, link, journal or rod end has proven to be the cost effective solution for most applications requiring reliability and a long operational life without requiring intervening maintenance.

Please consult with your local Sales Engineer or contact us directly to get a technical design consultation.
<table>
<thead>
<tr>
<th>Liner</th>
<th>Common Applications</th>
<th>Operating Temperature Range °F (°C)</th>
<th>Maximum Radial Load Ratings - lb/in² (MPa)</th>
<th>Maximum Velocity* ft/min (m/min)</th>
<th>Coefficient of Friction</th>
<th>SAE Approvals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibriloid</td>
<td>Hydraulic Actuators, Engine Mounts, Landing Gear Trunnions</td>
<td>450 (230) 80,000 (551) 120,000 (627) 60,000 (414) 10 (3.0) .04-.15</td>
<td>AS81820** AS81934 AS81935</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M889®</td>
<td>Landing Gear, Doors, Engine Mounts, Flap/Slat Linkages</td>
<td>325 (163) 80,000 (551) 120,000 (627) 60,000 (414) 10 (3.0) -</td>
<td>AS81820 AS81934 AS81935</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberglide® VI</td>
<td>Helicopter Main Rotor, Pitch Links, Control Links, Swashplate Sliders</td>
<td>300 (149) 60,000 (414) 90,000 (621) 25,000 (172) 36 (11.0) .03-.07</td>
<td>AS81819***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberglide® V</td>
<td>Helicopter Pitch Links, Swashplate Sliders, Trunnion Dampers</td>
<td>300 (149) 60,000 (414) 90,000 (621) 30,000 (207) 15 (4.5) .03-.10</td>
<td>AS8943</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabroid® II/G2</td>
<td>Landing Gear Shock Struts, Actuators, Hinge Lines, Control Links</td>
<td>-320 (-195) 450 (232) 60,000 (414) 90,000 (621) 30,000 (207) 12 (3.7) .03-.10</td>
<td>AS8942 AS8943</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabroid® X</td>
<td>Turbine Engines, Nacelles, Stator Vane Bushings, Control Links, Variable Geometry Compressors</td>
<td>600 (316) 50,000 (345) 75,000 (517) 25,000 (172) 10 (3.0) .03-.12 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabroid® II</td>
<td>Rocket Motor Gimbal, Landing Gear Shock Struts</td>
<td>300 (149) 30,000 (207) 50,000 (345) 10,000 (69) 12 (3.7) - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabroid® I</td>
<td>Rocket Motor Gimbal, Landing Gear Shock Struts</td>
<td>300 (149) 20,000 (138) 30,000 (207) 10,000 (69) 12 (3.7) - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabroid® G</td>
<td>Industrial Equipment</td>
<td>400 (204) 60,000 (414) 90,000 (621) 20,000 (138) 35 (10.7) - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberglide® A</td>
<td>Industrial Equipment</td>
<td>300 (149) 38,000 (262) 57,000 (393) 20,000 (138) 35 (10.7) - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The maximum allowable PV is less than the Max P x Max V listed in the table
**Also meets Type A requirements
***Meets or exceeds RBC Test Lab Capabilities

RBC liner systems are resistant to:
- Phosphate Ester Hydraulic Fluid
- Aerospace Cleaning Detergents
- MIL-PRF-87937 Aerospace Detergent
- MIL-STD-810, Salt Spray
- MIL-PRF-7808 Lubricating Oil
- MIL-STD-810, Fungus
- MIL-PRF-5606 Hydraulic Oil
- Liquid Nitrogen
- MIL-PRF-83282 Hydraulic Oil
- Water
- MIL-DTL-5624 Turbine Fuel
- Sand and Dust
- 1-1-1 Trichloroethane
- Vacuum

RBC Test Lab Capabilities:
- Steady State Load
- Reversing Load
- High Speed Capabilities
- High/Low Temperature
- Contamination Testing

866.RBC.AERO (866.722.2376) www.rbcbearings.com

This document contains a general overview of the products and features described herein. It is solely for informational purposes, does not represent a warranty of the information contained herein, and is not to be construed as an offer to sell or a solicitation to buy. Contact RBC Bearings for detailed information suitable to your specific applications. RBC Bearings reserves the right to modify its products and related product information at any time without prior notice. Some of the products listed herein may be covered by one or more issued and pending U.S. or foreign patents. Contact RBC Bearings for product specific information.

© 2015 RBC Bearings Incorporated. All rights reserved.