Fracture-tough airframe products enhance corrosion resistance

For many years, corrosion has been a significant problem with bearings used in the aircraft industry. While CRES 440C has been used successfully in many aircraft applications, it is not suitable for the demands of rod end banjos or track roller studs. These two bearing components require a full Rc 58 hardness in the raceway area and a softer, tougher material elsewhere. This is not attainable with CRES 440C. RBC’s AeroCres® products provide the unique solution that meets these dual material requirements.

We have selected a specialized carburized stainless steel, and have developed and optimized the heat treatment process that resulted in a homogeneous microstructure — delivering both corrosion protection and core fracture toughness.

Currently, this new material is being used for many structural bearing components such as rod end banjos, track roller studs, and outer rings. Fracture toughness, corrosion resistance, and long fatigue life are critical requirements for these components.

AeroCres® fracture-tough airframe products offer enhanced corrosion resistance in harsh operating environments.

Benefits

- Excellent fracture toughness superior to CRES 440C.
- Proven corrosion resistance similar to CRES 440C.
- Compressive residual stresses in carburized case.
- Lower starting torque after extended exposure to a neutral salt solution (ASTM-G44).
- Meets or exceeds government requirements for fatigue and static testing per AS 39901.
- Longer bearing life resisting premature corrosion.

Applications

Bearings located in exposed corrosive positions of aircraft such as:

- Landing gear and doors
- Leading and trailing edges
- Engine controls
- Tail sections
AeroCres® Fracture-tough Airframe Products

Corrosion Resistance Comparison

AeroCres® Rod End vs. 8620/52100 Rod End

<table>
<thead>
<tr>
<th>Salt Spray Test Results (1,000 hours) ASTM-B117</th>
<th>Alternate Immersion Corrosion Test ASTM G44-88 Results* (1,000 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plated 8620 Rod End Outer with 52100 Steel Inner Ring and Balls</td>
<td>Standard Assembly: 8620 rod end outers with 52100 steel inner ring and balls</td>
</tr>
<tr>
<td>Plated AeroCres® Rod End Outer with CRES 440C Inner Ring and Balls</td>
<td>Corrosion Resistant CRES Assembly: AeroCres® rod end outer with CRES 440C inner ring and balls</td>
</tr>
</tbody>
</table>

Alternate Immersion Corrosion Test Torque Results

![Graph showing torque results over time for 8620/52100 and AeroCres® rod ends.]

Microstructure AeroCres® fracture-tough material vs. CRES 440C

- **Plated 8620 Rod End Outer with 52100 Steel Inner Ring and Balls**
- **Plated AeroCres® Rod End Outer with CRES 440C Inner Ring and Balls**

Approvals

- BACB10GS
- BACB10GY
- BACB10GZ

Engineering Support

- Application consultation
- Product design
- Product testing
- Metallurgical analysis
- Heat treating, stainless, and other high-alloy steels

Ordering Information

- Contact RBC Customer Service at 866.722.2376

This document contains a general overview of the products and features described herein. It is solely for informational purposes, does not represent a warranty of the information contained herein, and is not to be construed as an offer to sell or a solicitation to buy. Contact RBC Bearings Incorporated for detailed information suitable to your specific applications. RBC Bearings Incorporated reserves the right to modify its products and related product information at any time without prior notice. Some of the products listed herein may be covered by one or more issued and pending U.S. or foreign patents. Contact RBC Bearings for product specific information.

© 2005 RBC Bearings Incorporated